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A solution is presented for the problem of accelerating a viscous 
incompressible conducting fluid in a magnetohydrodynamie channel 
whose electrodes close an external circuit exhibiting resistance and 
inductance, and connected by mutual induction to a secondary circuit. 
The flow regime in the channel is assumed to be laminar. 

( 
Fig. 1 

Let us consider the unsteady flow of a conducting fluid in a long 
channel of rectangular cross section in the presence of a uniform mag- 
netic field B x = B0 (Fig. 1). We will assume the two channel walls 
x = • to be thin and made of metal of low conductivity, and we 
wiI1 assume the other two walls y = * a / 2  to be electrodes of good 
conducting material and closing an external circuit with resistance r~ 
and inductance L~. Let this circuit be connected by mutual inductance 
N to a secondary circuit with resistance r2 and inductance Ls. We also 
assume that a >> b, so that the change in the flow parameters along the 
y axis in comparison with the change along the x-axis can be neglected. 
Under these conditions, the system of magnetohydrodynamics equatiom 
takes the form 
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OE~ OB z 
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= l O  B 
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Here v is the fluid flow velocity, p is the pressure, j is the electric 
current demity, E is the electric field strength; O;~,O,and ~ are the 
density, dynamic viscosity, conductivity, and magnetic permeability, 
respectively, of the tluid. 

In the cases of practical interest it may be assumed that Ey does not 
depend on x, and is a function only of time [1]. Then, in accordance 
with Kirehhoff's second law, we may write the following system of 
equations for the total current flowing in the mutually coupled circuits 
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rll l  -}- L1 ~ -1- N ~ -~- Eya = O, 

die N d'~ 2 . r2~- § L..--37- q- - -  = 0 (2) 

When we consider (2), Eq. (1) reduces to the following system: 
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Here U is the mean fluid flow velocity, M is the Hartmann number, 
and r is the internal resistance of a channel of length l. 

The boundary conditions for (3) will be 

v = O, w : ~l/ab. (6) 

The initial conditions may be assigned in the form 

dI~ d12 
v(x,  0 ) = 1 1 - - I ~ . ~ -  dt dt O, 

d211 PoaBoL~ 
dt ~ "  = L 1 L z - - N  2 at t ~ O .  (7) 

Here P0 is the initial pressure gradient. 
From a practical viewpoint this problem corresponds to acceleration 

of a conducting fluid in a magnetohydrodynamic channel with an ex- 
ternal circuit connected. 

1. We first consider the acceleration of a conducting fluid in a 
channel with the external secondary circuit open (N = 0). 

Letting Ii(t ) be a given function of time in Eq. (3), the solution 
for v(x, t) may be written in the form [2, 3] 

co 

v (x, t) = 2 2 (ch (t/"~nlf~.b) - -  ch (]/"~nx)) • 

t 

0 

Here an = V(gn - M2/bS), and the eigenvalnes of Sn are determined 
from the following transcendental equation: 

M~ 
= ~ th - - 7 - ) .  (9) 

Analysis of (9) indicates that for M >> 1 there is a unique positive 
value of •, which determines, to a high degree of accuracy, the nature 
of the variation in time of the mean fluid flow velocity. 

Substituting (8) into (4), with M >> 0, we obtain 

L1 ~ -4- (rl + r) Ix = 

t t 
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Assuming T = t - O, and turning to the new variable X = Ile - a t ,  
we may write (I0), following differentiation with respect to t, in the 
form 

d~X dX 
dt 2 "Jr- 2 8 - ~ -  @ (o~X = ~ P  (t) e -:r , 

6 =1/2 (r1-t- r + a L  D LI -], 

m e : W _ / L 1 ,  m = W + / L  1 �9 (11) 
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The solution of (11), allowing for the initial conditions (7), depend- 
ing on the sign of the discriminant, can be represented in the form [4] 
X: 

a) )c- = 4 ( 6 ~ -  o~) > 0 , 

t 
2ra e-=~e ~(~-t) sh L (t X (t) = --~-SP(~)  - - x )  d~ ; 

0 
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b) L ~ 4 ( m ~ - - 6 ~ ) > 0  , 

t 
2m I L X (t) = -~- P (~) e-a% s(~-t) sin -~ (t - -  x) d~ ; 

o c) k = 0 , 
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x (t) = m f (t - -  "0 P ('~) e-a~'e s(~-0 d~. 
0 

(18) 
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Thus, for a given function P(t), depending on the specific conditions 
from (12)-(14), Ii(t) is determined, and the local fluid flow velocity is 
calculated from (8). 

2. With the external secondary circuit closed (N ~ 0), the problem 
is solved analogously. Introducing the new variables X, = I t e- c~t and 
Xr h e -  c~t the system of equations (3)-(5)  may be written in the form 

L d~XI dX1 d~X2 
1 --dff- q- 28 L1 --~T- q- N d---d-~- q- 

dX.* 
A- aN ~ -{- o)*L1X1 ~ mL1P (t) o "~t, 

dXr dX~ 
N ~ -1- L~. ~ ' ~  -{- aNX1 -[- (ru -4- ale) X~ ~ O. (15) 

Solving this system for XI, we obtain 

Here 

daX1 d~X~ _ _ _  dX1 
A,  "-dg- + A ~ ' - d W - l -  A3 ~ - t -  A d ~  = 

= rrtLlo"~r (t) {As [ln P (t)]' - -  etA5 -b A6}. (16) 

A i = - -  ( L i L  ~ - -  N~) ,  A ~  = 2o~N 2 - -  

--(n -'}- r + o~Lx).L, - -  (r~ -{- aL~) L t .  

A a = a2N 2 - -  (r i -[- r -~- c~L1)(r ~ --~ r - -  W_L~ , 

A i =  --IV_(r6+~L2), As=- -L2 ,  A6= -- ( rz+aLz) .  

Thus, the problem of finding the current Ii(t) reduces to a linear 
differential equation of the third order with constant coefficients, whose 
solution for a given function P(t) presents no difficulties. 

Figure 2 shows the results of calculating the t ime variation of the 
mean flow velocity of the conducting fluid in the magnetohydrodynam- 
ic ehanneI under consideration, on sudden application of a constant 
pressure difference for the case of an open external circuit (curve 1) 
and a closed circuit (curve 2). The following values were taken as the 

initial data: 
channel dimensions : 

a = 0.1mi b --  0.01m, l = t m ;  

working fluid: mercury at T = 20* C, 

a =  t.046.i06 l / o h m . m ,  

~1 = t.55 .t0 -s N .  see /m z, 

p = t3.56.t06 kg /m s, 

r =  r l =  10 -5 ohm, Lx= I0 -s H , 

r ~ = t 0  -s ohm, L ~ = t 0  -s H, N = 0 . 5 . 1 0  -~ H ,  

M = t00 .  

The ordinate in the figure shows the mean  fluid flow velocity re- 
ferred to its asymptotic value. 

! ~ ~!~ t.see 
# / g 3 

Fig. 2 

The investigatious that were conducted allow us to conclude that 
the presence of reactances in the external circuit of a magnetohydrody- 
namic channel can lead to periodicity in the acceleration of a conduct- 
ing fluid. In this situation mutual  inductance decreases the amplitude 
of oscillation. 

In conclusion we note that this problem can easily be generalized 
to include capacitance in the external circuit, and nonzero init ial  
conditions. 
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